!C99Shell v. 2.1 [PHP 8 Update] [02.02.2022]!

Software: Apache/2.4.53 (Unix) OpenSSL/1.1.1o PHP/7.4.29 mod_perl/2.0.12 Perl/v5.34.1. PHP/7.4.29 

uname -a: Linux vps-2738122-x 4.15.0-213-generic #224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023 x86_64 

uid=1(daemon) gid=1(daemon) grupos=1(daemon) 

Safe-mode: OFF (not secure)

/opt/apex_tdfonline/proyectos/tdfonline/www/docs/openssl/crypto/modes/asm/   drwxr-xr-x
Free 14.15 GB of 61.93 GB (22.86%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     ghash-x86_64.pl (43.57 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#! /usr/bin/env perl
# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# March, June 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that
# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
# function features so called "528B" variant utilizing additional
# 256+16 bytes of per-key storage [+512 bytes shared table].
# Performance results are for this streamed GHASH subroutine and are
# expressed in cycles per processed byte, less is better:
#
#        gcc 3.4.x(*)    assembler
#
# P4        28.6        14.0        +100%
# Opteron    19.3        7.7        +150%
# Core2        17.8        8.1(**)        +120%
# Atom        31.6        16.8        +88%
# VIA Nano    21.8        10.1        +115%
#
# (*)    comparison is not completely fair, because C results are
#    for vanilla "256B" implementation, while assembler results
#    are for "528B";-)
# (**)    it's mystery [to me] why Core2 result is not same as for
#    Opteron;

# May 2010
#
# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
# See ghash-x86.pl for background information and details about coding
# techniques.
#
# Special thanks to David Woodhouse for providing access to a
# Westmere-based system on behalf of Intel Open Source Technology Centre.

# December 2012
#
# Overhaul: aggregate Karatsuba post-processing, improve ILP in
# reduction_alg9, increase reduction aggregate factor to 4x. As for
# the latter. ghash-x86.pl discusses that it makes lesser sense to
# increase aggregate factor. Then why increase here? Critical path
# consists of 3 independent pclmulqdq instructions, Karatsuba post-
# processing and reduction. "On top" of this we lay down aggregated
# multiplication operations, triplets of independent pclmulqdq's. As
# issue rate for pclmulqdq is limited, it makes lesser sense to
# aggregate more multiplications than it takes to perform remaining
# non-multiplication operations. 2x is near-optimal coefficient for
# contemporary Intel CPUs (therefore modest improvement coefficient),
# but not for Bulldozer. Latter is because logical SIMD operations
# are twice as slow in comparison to Intel, so that critical path is
# longer. A CPU with higher pclmulqdq issue rate would also benefit
# from higher aggregate factor...
#
# Westmere    1.78(+13%)
# Sandy Bridge    1.80(+8%)
# Ivy Bridge    1.80(+7%)
# Haswell    0.55(+93%) (if system doesn't support AVX)
# Broadwell    0.45(+110%)(if system doesn't support AVX)
# Skylake    0.44(+110%)(if system doesn't support AVX)
# Bulldozer    1.49(+27%)
# Silvermont    2.88(+13%)
# Knights L    2.12(-)    (if system doesn't support AVX)
# Goldmont    1.08(+24%)

# March 2013
#
# ... 8x aggregate factor AVX code path is using reduction algorithm
# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
# sub-optimally in comparison to above mentioned version. But thanks
# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
# it performs in 0.41 cycles per byte on Haswell processor, in
# 0.29 on Broadwell, and in 0.36 on Skylake.
#
# Knights Landing achieves 1.09 cpb.
#
# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest

# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
        =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
    $avx = ($1>=2.20) + ($1>=2.22);
}

if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
        `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
    $avx = ($1>=2.09) + ($1>=2.10);
}

if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
        `ml64 2>&1` =~ /Version ([0-9]+)\./) {
    $avx = ($1>=10) + ($1>=11);
}

if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
    $avx = ($2>=3.0) + ($2>3.0);
}

open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
    or die "can't call $xlate: $!";
*STDOUT=*OUT;

$do4xaggr=1;

# common register layout
$nlo="%rax";
$nhi="%rbx";
$Zlo="%r8";
$Zhi="%r9";
$tmp="%r10";
$rem_4bit = "%r11";

$Xi="%rdi";
$Htbl="%rsi";

# per-function register layout
$cnt="%rcx";
$rem="%rdx";

sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/    or
            $r =~ s/%[er]([sd]i)/%\1l/    or
            $r =~ s/%[er](bp)/%\1l/        or
            $r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }

sub AUTOLOAD()        # thunk [simplified] 32-bit style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
  my $arg = pop;
    $arg = "\$$arg" if ($arg*1 eq $arg);
    $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
}

{ my $N;
  sub loop() {
  my $inp = shift;

    $N++;
$code.=<<___;
    xor    $nlo,$nlo
    xor    $nhi,$nhi
    mov    `&LB("$Zlo")`,`&LB("$nlo")`
    mov    `&LB("$Zlo")`,`&LB("$nhi")`
    shl    \$4,`&LB("$nlo")`
    mov    \$14,$cnt
    mov    8($Htbl,$nlo),$Zlo
    mov    ($Htbl,$nlo),$Zhi
    and    \$0xf0,`&LB("$nhi")`
    mov    $Zlo,$rem
    jmp    .Loop$N

.align    16
.Loop$N:
    shr    \$4,$Zlo
    and    \$0xf,$rem
    mov    $Zhi,$tmp
    mov    ($inp,$cnt),`&LB("$nlo")`
    shr    \$4,$Zhi
    xor    8($Htbl,$nhi),$Zlo
    shl    \$60,$tmp
    xor    ($Htbl,$nhi),$Zhi
    mov    `&LB("$nlo")`,`&LB("$nhi")`
    xor    ($rem_4bit,$rem,8),$Zhi
    mov    $Zlo,$rem
    shl    \$4,`&LB("$nlo")`
    xor    $tmp,$Zlo
    dec    $cnt
    js    .Lbreak$N

    shr    \$4,$Zlo
    and    \$0xf,$rem
    mov    $Zhi,$tmp
    shr    \$4,$Zhi
    xor    8($Htbl,$nlo),$Zlo
    shl    \$60,$tmp
    xor    ($Htbl,$nlo),$Zhi
    and    \$0xf0,`&LB("$nhi")`
    xor    ($rem_4bit,$rem,8),$Zhi
    mov    $Zlo,$rem
    xor    $tmp,$Zlo
    jmp    .Loop$N

.align    16
.Lbreak$N:
    shr    \$4,$Zlo
    and    \$0xf,$rem
    mov    $Zhi,$tmp
    shr    \$4,$Zhi
    xor    8($Htbl,$nlo),$Zlo
    shl    \$60,$tmp
    xor    ($Htbl,$nlo),$Zhi
    and    \$0xf0,`&LB("$nhi")`
    xor    ($rem_4bit,$rem,8),$Zhi
    mov    $Zlo,$rem
    xor    $tmp,$Zlo

    shr    \$4,$Zlo
    and    \$0xf,$rem
    mov    $Zhi,$tmp
    shr    \$4,$Zhi
    xor    8($Htbl,$nhi),$Zlo
    shl    \$60,$tmp
    xor    ($Htbl,$nhi),$Zhi
    xor    $tmp,$Zlo
    xor    ($rem_4bit,$rem,8),$Zhi

    bswap    $Zlo
    bswap    $Zhi
___
}}

$code=<<___;
.text
.extern    OPENSSL_ia32cap_P

.globl    gcm_gmult_4bit
.type    gcm_gmult_4bit,\@function,2
.align    16
gcm_gmult_4bit:
.cfi_startproc
    endbranch
    push    %rbx
.cfi_push    %rbx
    push    %rbp        # %rbp and others are pushed exclusively in
.cfi_push    %rbp
    push    %r12        # order to reuse Win64 exception handler...
.cfi_push    %r12
    push    %r13
.cfi_push    %r13
    push    %r14
.cfi_push    %r14
    push    %r15
.cfi_push    %r15
    sub    \$280,%rsp
.cfi_adjust_cfa_offset    280
.Lgmult_prologue:

    movzb    15($Xi),$Zlo
    lea    .Lrem_4bit(%rip),$rem_4bit
___
    &loop    ($Xi);
$code.=<<___;
    mov    $Zlo,8($Xi)
    mov    $Zhi,($Xi)

    lea    280+48(%rsp),%rsi
.cfi_def_cfa    %rsi,8
    mov    -8(%rsi),%rbx
.cfi_restore    %rbx
    lea    (%rsi),%rsp
.cfi_def_cfa_register    %rsp
.Lgmult_epilogue:
    ret
.cfi_endproc
.size    gcm_gmult_4bit,.-gcm_gmult_4bit
___

# per-function register layout
$inp="%rdx";
$len="%rcx";
$rem_8bit=$rem_4bit;

$code.=<<___;
.globl    gcm_ghash_4bit
.type    gcm_ghash_4bit,\@function,4
.align    16
gcm_ghash_4bit:
.cfi_startproc
    endbranch
    push    %rbx
.cfi_push    %rbx
    push    %rbp
.cfi_push    %rbp
    push    %r12
.cfi_push    %r12
    push    %r13
.cfi_push    %r13
    push    %r14
.cfi_push    %r14
    push    %r15
.cfi_push    %r15
    sub    \$280,%rsp
.cfi_adjust_cfa_offset    280
.Lghash_prologue:
    mov    $inp,%r14        # reassign couple of args
    mov    $len,%r15
___
{ my $inp="%r14";
  my $dat="%edx";
  my $len="%r15";
  my @nhi=("%ebx","%ecx");
  my @rem=("%r12","%r13");
  my $Hshr4="%rbp";

    &sub    ($Htbl,-128);        # size optimization
    &lea    ($Hshr4,"16+128(%rsp)");
    { my @lo =($nlo,$nhi);
          my @hi =($Zlo,$Zhi);

      &xor    ($dat,$dat);
      for ($i=0,$j=-2;$i<18;$i++,$j++) {
        &mov    ("$j(%rsp)",&LB($dat))        if ($i>1);
        &or        ($lo[0],$tmp)            if ($i>1);
        &mov    (&LB($dat),&LB($lo[1]))        if ($i>0 && $i<17);
        &shr    ($lo[1],4)            if ($i>0 && $i<17);
        &mov    ($tmp,$hi[1])            if ($i>0 && $i<17);
        &shr    ($hi[1],4)            if ($i>0 && $i<17);
        &mov    ("8*$j($Hshr4)",$hi[0])        if ($i>1);
        &mov    ($hi[0],"16*$i+0-128($Htbl)")    if ($i<16);
        &shl    (&LB($dat),4)            if ($i>0 && $i<17);
        &mov    ("8*$j-128($Hshr4)",$lo[0])    if ($i>1);
        &mov    ($lo[0],"16*$i+8-128($Htbl)")    if ($i<16);
        &shl    ($tmp,60)            if ($i>0 && $i<17);

        push    (@lo,shift(@lo));
        push    (@hi,shift(@hi));
      }
    }
    &add    ($Htbl,-128);
    &mov    ($Zlo,"8($Xi)");
    &mov    ($Zhi,"0($Xi)");
    &add    ($len,$inp);        # pointer to the end of data
    &lea    ($rem_8bit,".Lrem_8bit(%rip)");
    &jmp    (".Louter_loop");

$code.=".align    16\n.Louter_loop:\n";
    &xor    ($Zhi,"($inp)");
    &mov    ("%rdx","8($inp)");
    &lea    ($inp,"16($inp)");
    &xor    ("%rdx",$Zlo);
    &mov    ("($Xi)",$Zhi);
    &mov    ("8($Xi)","%rdx");
    &shr    ("%rdx",32);

    &xor    ($nlo,$nlo);
    &rol    ($dat,8);
    &mov    (&LB($nlo),&LB($dat));
    &movz    ($nhi[0],&LB($dat));
    &shl    (&LB($nlo),4);
    &shr    ($nhi[0],4);

    for ($j=11,$i=0;$i<15;$i++) {
        &rol    ($dat,8);
        &xor    ($Zlo,"8($Htbl,$nlo)")            if ($i>0);
        &xor    ($Zhi,"($Htbl,$nlo)")            if ($i>0);
        &mov    ($Zlo,"8($Htbl,$nlo)")            if ($i==0);
        &mov    ($Zhi,"($Htbl,$nlo)")            if ($i==0);

        &mov    (&LB($nlo),&LB($dat));
        &xor    ($Zlo,$tmp)                if ($i>0);
        &movzw    ($rem[1],"($rem_8bit,$rem[1],2)")    if ($i>0);

        &movz    ($nhi[1],&LB($dat));
        &shl    (&LB($nlo),4);
        &movzb    ($rem[0],"(%rsp,$nhi[0])");

        &shr    ($nhi[1],4)                if ($i<14);
        &and    ($nhi[1],0xf0)                if ($i==14);
        &shl    ($rem[1],48)                if ($i>0);
        &xor    ($rem[0],$Zlo);

        &mov    ($tmp,$Zhi);
        &xor    ($Zhi,$rem[1])                if ($i>0);
        &shr    ($Zlo,8);

        &movz    ($rem[0],&LB($rem[0]));
        &mov    ($dat,"$j($Xi)")            if (--$j%4==0);
        &shr    ($Zhi,8);

        &xor    ($Zlo,"-128($Hshr4,$nhi[0],8)");
        &shl    ($tmp,56);
        &xor    ($Zhi,"($Hshr4,$nhi[0],8)");

        unshift    (@nhi,pop(@nhi));        # "rotate" registers
        unshift    (@rem,pop(@rem));
    }
    &movzw    ($rem[1],"($rem_8bit,$rem[1],2)");
    &xor    ($Zlo,"8($Htbl,$nlo)");
    &xor    ($Zhi,"($Htbl,$nlo)");

    &shl    ($rem[1],48);
    &xor    ($Zlo,$tmp);

    &xor    ($Zhi,$rem[1]);
    &movz    ($rem[0],&LB($Zlo));
    &shr    ($Zlo,4);

    &mov    ($tmp,$Zhi);
    &shl    (&LB($rem[0]),4);
    &shr    ($Zhi,4);

    &xor    ($Zlo,"8($Htbl,$nhi[0])");
    &movzw    ($rem[0],"($rem_8bit,$rem[0],2)");
    &shl    ($tmp,60);

    &xor    ($Zhi,"($Htbl,$nhi[0])");
    &xor    ($Zlo,$tmp);
    &shl    ($rem[0],48);

    &bswap    ($Zlo);
    &xor    ($Zhi,$rem[0]);

    &bswap    ($Zhi);
    &cmp    ($inp,$len);
    &jb    (".Louter_loop");
}
$code.=<<___;
    mov    $Zlo,8($Xi)
    mov    $Zhi,($Xi)

    lea    280+48(%rsp),%rsi
.cfi_def_cfa    %rsi,8
    mov    -48(%rsi),%r15
.cfi_restore    %r15
    mov    -40(%rsi),%r14
.cfi_restore    %r14
    mov    -32(%rsi),%r13
.cfi_restore    %r13
    mov    -24(%rsi),%r12
.cfi_restore    %r12
    mov    -16(%rsi),%rbp
.cfi_restore    %rbp
    mov    -8(%rsi),%rbx
.cfi_restore    %rbx
    lea    0(%rsi),%rsp
.cfi_def_cfa_register    %rsp
.Lghash_epilogue:
    ret
.cfi_endproc
.size    gcm_ghash_4bit,.-gcm_ghash_4bit
___

######################################################################
# PCLMULQDQ version.

@_4args=$win64?    ("%rcx","%rdx","%r8", "%r9") :    # Win64 order
        ("%rdi","%rsi","%rdx","%rcx");    # Unix order

($Xi,$Xhi)=("%xmm0","%xmm1");    $Hkey="%xmm2";
($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");

sub clmul64x64_T2 {    # minimal register pressure
my ($Xhi,$Xi,$Hkey,$HK)=@_;

if (!defined($HK)) {    $HK = $T2;
$code.=<<___;
    movdqa        $Xi,$Xhi        #
    pshufd        \$0b01001110,$Xi,$T1
    pshufd        \$0b01001110,$Hkey,$T2
    pxor        $Xi,$T1            #
    pxor        $Hkey,$T2
___
} else {
$code.=<<___;
    movdqa        $Xi,$Xhi        #
    pshufd        \$0b01001110,$Xi,$T1
    pxor        $Xi,$T1            #
___
}
$code.=<<___;
    pclmulqdq    \$0x00,$Hkey,$Xi    #######
    pclmulqdq    \$0x11,$Hkey,$Xhi    #######
    pclmulqdq    \$0x00,$HK,$T1        #######
    pxor        $Xi,$T1            #
    pxor        $Xhi,$T1        #

    movdqa        $T1,$T2            #
    psrldq        \$8,$T1
    pslldq        \$8,$T2            #
    pxor        $T1,$Xhi
    pxor        $T2,$Xi            #
___
}

sub reduction_alg9 {    # 17/11 times faster than Intel version
my ($Xhi,$Xi) = @_;

$code.=<<___;
    # 1st phase
    movdqa        $Xi,$T2            #
    movdqa        $Xi,$T1
    psllq        \$5,$Xi
    pxor        $Xi,$T1            #
    psllq        \$1,$Xi
    pxor        $T1,$Xi            #
    psllq        \$57,$Xi        #
    movdqa        $Xi,$T1            #
    pslldq        \$8,$Xi
    psrldq        \$8,$T1            #
    pxor        $T2,$Xi
    pxor        $T1,$Xhi        #

    # 2nd phase
    movdqa        $Xi,$T2
    psrlq        \$1,$Xi
    pxor        $T2,$Xhi        #
    pxor        $Xi,$T2
    psrlq        \$5,$Xi
    pxor        $T2,$Xi            #
    psrlq        \$1,$Xi            #
    pxor        $Xhi,$Xi        #
___
}

{ my ($Htbl,$Xip)=@_4args;
  my $HK="%xmm6";

$code.=<<___;
.globl    gcm_init_clmul
.type    gcm_init_clmul,\@abi-omnipotent
.align    16
gcm_init_clmul:
.cfi_startproc
.L_init_clmul:
___
$code.=<<___ if ($win64);
.LSEH_begin_gcm_init_clmul:
    # I can't trust assembler to use specific encoding:-(
    .byte    0x48,0x83,0xec,0x18        #sub    $0x18,%rsp
    .byte    0x0f,0x29,0x34,0x24        #movaps    %xmm6,(%rsp)
___
$code.=<<___;
    movdqu        ($Xip),$Hkey
    pshufd        \$0b01001110,$Hkey,$Hkey    # dword swap

    # <<1 twist
    pshufd        \$0b11111111,$Hkey,$T2    # broadcast uppermost dword
    movdqa        $Hkey,$T1
    psllq        \$1,$Hkey
    pxor        $T3,$T3            #
    psrlq        \$63,$T1
    pcmpgtd        $T2,$T3            # broadcast carry bit
    pslldq        \$8,$T1
    por        $T1,$Hkey        # H<<=1

    # magic reduction
    pand        .L0x1c2_polynomial(%rip),$T3
    pxor        $T3,$Hkey        # if(carry) H^=0x1c2_polynomial

    # calculate H^2
    pshufd        \$0b01001110,$Hkey,$HK
    movdqa        $Hkey,$Xi
    pxor        $Hkey,$HK
___
    &clmul64x64_T2    ($Xhi,$Xi,$Hkey,$HK);
    &reduction_alg9    ($Xhi,$Xi);
$code.=<<___;
    pshufd        \$0b01001110,$Hkey,$T1
    pshufd        \$0b01001110,$Xi,$T2
    pxor        $Hkey,$T1        # Karatsuba pre-processing
    movdqu        $Hkey,0x00($Htbl)    # save H
    pxor        $Xi,$T2            # Karatsuba pre-processing
    movdqu        $Xi,0x10($Htbl)        # save H^2
    palignr        \$8,$T1,$T2        # low part is H.lo^H.hi...
    movdqu        $T2,0x20($Htbl)        # save Karatsuba "salt"
___
if ($do4xaggr) {
    &clmul64x64_T2    ($Xhi,$Xi,$Hkey,$HK);    # H^3
    &reduction_alg9    ($Xhi,$Xi);
$code.=<<___;
    movdqa        $Xi,$T3
___
    &clmul64x64_T2    ($Xhi,$Xi,$Hkey,$HK);    # H^4
    &reduction_alg9    ($Xhi,$Xi);
$code.=<<___;
    pshufd        \$0b01001110,$T3,$T1
    pshufd        \$0b01001110,$Xi,$T2
    pxor        $T3,$T1            # Karatsuba pre-processing
    movdqu        $T3,0x30($Htbl)        # save H^3
    pxor        $Xi,$T2            # Karatsuba pre-processing
    movdqu        $Xi,0x40($Htbl)        # save H^4
    palignr        \$8,$T1,$T2        # low part is H^3.lo^H^3.hi...
    movdqu        $T2,0x50($Htbl)        # save Karatsuba "salt"
___
}
$code.=<<___ if ($win64);
    movaps    (%rsp),%xmm6
    lea    0x18(%rsp),%rsp
.LSEH_end_gcm_init_clmul:
___
$code.=<<___;
    ret
.cfi_endproc
.size    gcm_init_clmul,.-gcm_init_clmul
___
}

{ my ($Xip,$Htbl)=@_4args;

$code.=<<___;
.globl    gcm_gmult_clmul
.type    gcm_gmult_clmul,\@abi-omnipotent
.align    16
gcm_gmult_clmul:
.cfi_startproc
    endbranch
.L_gmult_clmul:
    movdqu        ($Xip),$Xi
    movdqa        .Lbswap_mask(%rip),$T3
    movdqu        ($Htbl),$Hkey
    movdqu        0x20($Htbl),$T2
    pshufb        $T3,$Xi
___
    &clmul64x64_T2    ($Xhi,$Xi,$Hkey,$T2);
$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
    # experimental alternative. special thing about is that there
    # no dependency between the two multiplications...
    mov        \$`0xE1<<1`,%eax
    mov        \$0xA040608020C0E000,%r10    # ((7..0)·0xE0)&0xff
    mov        \$0x07,%r11d
    movq        %rax,$T1
    movq        %r10,$T2
    movq        %r11,$T3        # borrow $T3
    pand        $Xi,$T3
    pshufb        $T3,$T2            # ($Xi&7)·0xE0
    movq        %rax,$T3
    pclmulqdq    \$0x00,$Xi,$T1        # ·(0xE1<<1)
    pxor        $Xi,$T2
    pslldq        \$15,$T2
    paddd        $T2,$T2            # <<(64+56+1)
    pxor        $T2,$Xi
    pclmulqdq    \$0x01,$T3,$Xi
    movdqa        .Lbswap_mask(%rip),$T3    # reload $T3
    psrldq        \$1,$T1
    pxor        $T1,$Xhi
    pslldq        \$7,$Xi
    pxor        $Xhi,$Xi
___
$code.=<<___;
    pshufb        $T3,$Xi
    movdqu        $Xi,($Xip)
    ret
.cfi_endproc
.size    gcm_gmult_clmul,.-gcm_gmult_clmul
___
}

{ my ($Xip,$Htbl,$inp,$len)=@_4args;
  my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
  my ($T1,$T2,$T3)=map("%xmm$_",(8..10));

$code.=<<___;
.globl    gcm_ghash_clmul
.type    gcm_ghash_clmul,\@abi-omnipotent
.align    32
gcm_ghash_clmul:
.cfi_startproc
    endbranch
.L_ghash_clmul:
___
$code.=<<___ if ($win64);
    lea    -0x88(%rsp),%rax
.LSEH_begin_gcm_ghash_clmul:
    # I can't trust assembler to use specific encoding:-(
    .byte    0x48,0x8d,0x60,0xe0        #lea    -0x20(%rax),%rsp
    .byte    0x0f,0x29,0x70,0xe0        #movaps    %xmm6,-0x20(%rax)
    .byte    0x0f,0x29,0x78,0xf0        #movaps    %xmm7,-0x10(%rax)
    .byte    0x44,0x0f,0x29,0x00        #movaps    %xmm8,0(%rax)
    .byte    0x44,0x0f,0x29,0x48,0x10    #movaps    %xmm9,0x10(%rax)
    .byte    0x44,0x0f,0x29,0x50,0x20    #movaps    %xmm10,0x20(%rax)
    .byte    0x44,0x0f,0x29,0x58,0x30    #movaps    %xmm11,0x30(%rax)
    .byte    0x44,0x0f,0x29,0x60,0x40    #movaps    %xmm12,0x40(%rax)
    .byte    0x44,0x0f,0x29,0x68,0x50    #movaps    %xmm13,0x50(%rax)
    .byte    0x44,0x0f,0x29,0x70,0x60    #movaps    %xmm14,0x60(%rax)
    .byte    0x44,0x0f,0x29,0x78,0x70    #movaps    %xmm15,0x70(%rax)
___
$code.=<<___;
    movdqa        .Lbswap_mask(%rip),$T3

    movdqu        ($Xip),$Xi
    movdqu        ($Htbl),$Hkey
    movdqu        0x20($Htbl),$HK
    pshufb        $T3,$Xi

    sub        \$0x10,$len
    jz        .Lodd_tail

    movdqu        0x10($Htbl),$Hkey2
___
if ($do4xaggr) {
my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));

$code.=<<___;
    mov        OPENSSL_ia32cap_P+4(%rip),%eax
    cmp        \$0x30,$len
    jb        .Lskip4x

    and        \$`1<<26|1<<22`,%eax    # isolate MOVBE+XSAVE
    cmp        \$`1<<22`,%eax        # check for MOVBE without XSAVE
    je        .Lskip4x

    sub        \$0x30,$len
    mov        \$0xA040608020C0E000,%rax    # ((7..0)·0xE0)&0xff
    movdqu        0x30($Htbl),$Hkey3
    movdqu        0x40($Htbl),$Hkey4

    #######
    # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
    #
    movdqu        0x30($inp),$Xln
     movdqu        0x20($inp),$Xl
    pshufb        $T3,$Xln
     pshufb        $T3,$Xl
    movdqa        $Xln,$Xhn
    pshufd        \$0b01001110,$Xln,$Xmn
    pxor        $Xln,$Xmn
    pclmulqdq    \$0x00,$Hkey,$Xln
    pclmulqdq    \$0x11,$Hkey,$Xhn
    pclmulqdq    \$0x00,$HK,$Xmn

    movdqa        $Xl,$Xh
    pshufd        \$0b01001110,$Xl,$Xm
    pxor        $Xl,$Xm
    pclmulqdq    \$0x00,$Hkey2,$Xl
    pclmulqdq    \$0x11,$Hkey2,$Xh
    pclmulqdq    \$0x10,$HK,$Xm
    xorps        $Xl,$Xln
    xorps        $Xh,$Xhn
    movups        0x50($Htbl),$HK
    xorps        $Xm,$Xmn

    movdqu        0x10($inp),$Xl
     movdqu        0($inp),$T1
    pshufb        $T3,$Xl
     pshufb        $T3,$T1
    movdqa        $Xl,$Xh
    pshufd        \$0b01001110,$Xl,$Xm
     pxor        $T1,$Xi
    pxor        $Xl,$Xm
    pclmulqdq    \$0x00,$Hkey3,$Xl
     movdqa        $Xi,$Xhi
     pshufd        \$0b01001110,$Xi,$T1
     pxor        $Xi,$T1
    pclmulqdq    \$0x11,$Hkey3,$Xh
    pclmulqdq    \$0x00,$HK,$Xm
    xorps        $Xl,$Xln
    xorps        $Xh,$Xhn

    lea    0x40($inp),$inp
    sub    \$0x40,$len
    jc    .Ltail4x

    jmp    .Lmod4_loop
.align    32
.Lmod4_loop:
    pclmulqdq    \$0x00,$Hkey4,$Xi
    xorps        $Xm,$Xmn
     movdqu        0x30($inp),$Xl
     pshufb        $T3,$Xl
    pclmulqdq    \$0x11,$Hkey4,$Xhi
    xorps        $Xln,$Xi
     movdqu        0x20($inp),$Xln
     movdqa        $Xl,$Xh
    pclmulqdq    \$0x10,$HK,$T1
     pshufd        \$0b01001110,$Xl,$Xm
    xorps        $Xhn,$Xhi
     pxor        $Xl,$Xm
     pshufb        $T3,$Xln
    movups        0x20($Htbl),$HK
    xorps        $Xmn,$T1
     pclmulqdq    \$0x00,$Hkey,$Xl
     pshufd        \$0b01001110,$Xln,$Xmn

    pxor        $Xi,$T1            # aggregated Karatsuba post-processing
     movdqa        $Xln,$Xhn
    pxor        $Xhi,$T1        #
     pxor        $Xln,$Xmn
    movdqa        $T1,$T2            #
     pclmulqdq    \$0x11,$Hkey,$Xh
    pslldq        \$8,$T1
    psrldq        \$8,$T2            #
    pxor        $T1,$Xi
    movdqa        .L7_mask(%rip),$T1
    pxor        $T2,$Xhi        #
    movq        %rax,$T2

    pand        $Xi,$T1            # 1st phase
    pshufb        $T1,$T2            #
    pxor        $Xi,$T2            #
     pclmulqdq    \$0x00,$HK,$Xm
    psllq        \$57,$T2        #
    movdqa        $T2,$T1            #
    pslldq        \$8,$T2
     pclmulqdq    \$0x00,$Hkey2,$Xln
    psrldq        \$8,$T1            #
    pxor        $T2,$Xi
    pxor        $T1,$Xhi        #
    movdqu        0($inp),$T1

    movdqa        $Xi,$T2            # 2nd phase
    psrlq        \$1,$Xi
     pclmulqdq    \$0x11,$Hkey2,$Xhn
     xorps        $Xl,$Xln
     movdqu        0x10($inp),$Xl
     pshufb        $T3,$Xl
     pclmulqdq    \$0x10,$HK,$Xmn
     xorps        $Xh,$Xhn
     movups        0x50($Htbl),$HK
    pshufb        $T3,$T1
    pxor        $T2,$Xhi        #
    pxor        $Xi,$T2
    psrlq        \$5,$Xi

     movdqa        $Xl,$Xh
     pxor        $Xm,$Xmn
     pshufd        \$0b01001110,$Xl,$Xm
    pxor        $T2,$Xi            #
    pxor        $T1,$Xhi
     pxor        $Xl,$Xm
     pclmulqdq    \$0x00,$Hkey3,$Xl
    psrlq        \$1,$Xi            #
    pxor        $Xhi,$Xi        #
    movdqa        $Xi,$Xhi
     pclmulqdq    \$0x11,$Hkey3,$Xh
     xorps        $Xl,$Xln
    pshufd        \$0b01001110,$Xi,$T1
    pxor        $Xi,$T1

     pclmulqdq    \$0x00,$HK,$Xm
     xorps        $Xh,$Xhn

    lea    0x40($inp),$inp
    sub    \$0x40,$len
    jnc    .Lmod4_loop

.Ltail4x:
    pclmulqdq    \$0x00,$Hkey4,$Xi
    pclmulqdq    \$0x11,$Hkey4,$Xhi
    pclmulqdq    \$0x10,$HK,$T1
    xorps        $Xm,$Xmn
    xorps        $Xln,$Xi
    xorps        $Xhn,$Xhi
    pxor        $Xi,$Xhi        # aggregated Karatsuba post-processing
    pxor        $Xmn,$T1

    pxor        $Xhi,$T1        #
    pxor        $Xi,$Xhi

    movdqa        $T1,$T2            #
    psrldq        \$8,$T1
    pslldq        \$8,$T2            #
    pxor        $T1,$Xhi
    pxor        $T2,$Xi            #
___
    &reduction_alg9($Xhi,$Xi);
$code.=<<___;
    add    \$0x40,$len
    jz    .Ldone
    movdqu    0x20($Htbl),$HK
    sub    \$0x10,$len
    jz    .Lodd_tail
.Lskip4x:
___
}
$code.=<<___;
    #######
    # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
    #    [(H*Ii+1) + (H*Xi+1)] mod P =
    #    [(H*Ii+1) + H^2*(Ii+Xi)] mod P
    #
    movdqu        ($inp),$T1        # Ii
    movdqu        16($inp),$Xln        # Ii+1
    pshufb        $T3,$T1
    pshufb        $T3,$Xln
    pxor        $T1,$Xi            # Ii+Xi

    movdqa        $Xln,$Xhn
    pshufd        \$0b01001110,$Xln,$Xmn
    pxor        $Xln,$Xmn
    pclmulqdq    \$0x00,$Hkey,$Xln
    pclmulqdq    \$0x11,$Hkey,$Xhn
    pclmulqdq    \$0x00,$HK,$Xmn

    lea        32($inp),$inp        # i+=2
    nop
    sub        \$0x20,$len
    jbe        .Leven_tail
    nop
    jmp        .Lmod_loop

.align    32
.Lmod_loop:
    movdqa        $Xi,$Xhi
    movdqa        $Xmn,$T1
    pshufd        \$0b01001110,$Xi,$Xmn    #
    pxor        $Xi,$Xmn        #

    pclmulqdq    \$0x00,$Hkey2,$Xi
    pclmulqdq    \$0x11,$Hkey2,$Xhi
    pclmulqdq    \$0x10,$HK,$Xmn

    pxor        $Xln,$Xi        # (H*Ii+1) + H^2*(Ii+Xi)
    pxor        $Xhn,$Xhi
      movdqu    ($inp),$T2        # Ii
    pxor        $Xi,$T1            # aggregated Karatsuba post-processing
      pshufb    $T3,$T2
      movdqu    16($inp),$Xln        # Ii+1

    pxor        $Xhi,$T1
      pxor        $T2,$Xhi        # "Ii+Xi", consume early
    pxor        $T1,$Xmn
     pshufb        $T3,$Xln
    movdqa        $Xmn,$T1        #
    psrldq        \$8,$T1
    pslldq        \$8,$Xmn        #
    pxor        $T1,$Xhi
    pxor        $Xmn,$Xi        #

    movdqa        $Xln,$Xhn        #

      movdqa    $Xi,$T2            # 1st phase
      movdqa    $Xi,$T1
      psllq        \$5,$Xi
      pxor        $Xi,$T1            #
    pclmulqdq    \$0x00,$Hkey,$Xln    #######
      psllq        \$1,$Xi
      pxor        $T1,$Xi            #
      psllq        \$57,$Xi        #
      movdqa    $Xi,$T1            #
      pslldq    \$8,$Xi
      psrldq    \$8,$T1            #
      pxor        $T2,$Xi
    pshufd        \$0b01001110,$Xhn,$Xmn
      pxor        $T1,$Xhi        #
    pxor        $Xhn,$Xmn        #

      movdqa    $Xi,$T2            # 2nd phase
      psrlq        \$1,$Xi
    pclmulqdq    \$0x11,$Hkey,$Xhn    #######
      pxor        $T2,$Xhi        #
      pxor        $Xi,$T2
      psrlq        \$5,$Xi
      pxor        $T2,$Xi            #
    lea        32($inp),$inp
      psrlq        \$1,$Xi            #
    pclmulqdq    \$0x00,$HK,$Xmn        #######
      pxor        $Xhi,$Xi        #

    sub        \$0x20,$len
    ja        .Lmod_loop

.Leven_tail:
     movdqa        $Xi,$Xhi
     movdqa        $Xmn,$T1
     pshufd        \$0b01001110,$Xi,$Xmn    #
     pxor        $Xi,$Xmn        #

    pclmulqdq    \$0x00,$Hkey2,$Xi
    pclmulqdq    \$0x11,$Hkey2,$Xhi
    pclmulqdq    \$0x10,$HK,$Xmn

    pxor        $Xln,$Xi        # (H*Ii+1) + H^2*(Ii+Xi)
    pxor        $Xhn,$Xhi
    pxor        $Xi,$T1
    pxor        $Xhi,$T1
    pxor        $T1,$Xmn
    movdqa        $Xmn,$T1        #
    psrldq        \$8,$T1
    pslldq        \$8,$Xmn        #
    pxor        $T1,$Xhi
    pxor        $Xmn,$Xi        #
___
    &reduction_alg9    ($Xhi,$Xi);
$code.=<<___;
    test        $len,$len
    jnz        .Ldone

.Lodd_tail:
    movdqu        ($inp),$T1        # Ii
    pshufb        $T3,$T1
    pxor        $T1,$Xi            # Ii+Xi
___
    &clmul64x64_T2    ($Xhi,$Xi,$Hkey,$HK);    # H*(Ii+Xi)
    &reduction_alg9    ($Xhi,$Xi);
$code.=<<___;
.Ldone:
    pshufb        $T3,$Xi
    movdqu        $Xi,($Xip)
___
$code.=<<___ if ($win64);
    movaps    (%rsp),%xmm6
    movaps    0x10(%rsp),%xmm7
    movaps    0x20(%rsp),%xmm8
    movaps    0x30(%rsp),%xmm9
    movaps    0x40(%rsp),%xmm10
    movaps    0x50(%rsp),%xmm11
    movaps    0x60(%rsp),%xmm12
    movaps    0x70(%rsp),%xmm13
    movaps    0x80(%rsp),%xmm14
    movaps    0x90(%rsp),%xmm15
    lea    0xa8(%rsp),%rsp
.LSEH_end_gcm_ghash_clmul:
___
$code.=<<___;
    ret
.cfi_endproc
.size    gcm_ghash_clmul,.-gcm_ghash_clmul
___
}

$code.=<<___;
.globl    gcm_init_avx
.type    gcm_init_avx,\@abi-omnipotent
.align    32
gcm_init_avx:
.cfi_startproc
___
if ($avx) {
my ($Htbl,$Xip)=@_4args;
my $HK="%xmm6";

$code.=<<___ if ($win64);
.LSEH_begin_gcm_init_avx:
    # I can't trust assembler to use specific encoding:-(
    .byte    0x48,0x83,0xec,0x18        #sub    $0x18,%rsp
    .byte    0x0f,0x29,0x34,0x24        #movaps    %xmm6,(%rsp)
___
$code.=<<___;
    vzeroupper

    vmovdqu        ($Xip),$Hkey
    vpshufd        \$0b01001110,$Hkey,$Hkey    # dword swap

    # <<1 twist
    vpshufd        \$0b11111111,$Hkey,$T2    # broadcast uppermost dword
    vpsrlq        \$63,$Hkey,$T1
    vpsllq        \$1,$Hkey,$Hkey
    vpxor        $T3,$T3,$T3        #
    vpcmpgtd    $T2,$T3,$T3        # broadcast carry bit
    vpslldq        \$8,$T1,$T1
    vpor        $T1,$Hkey,$Hkey        # H<<=1

    # magic reduction
    vpand        .L0x1c2_polynomial(%rip),$T3,$T3
    vpxor        $T3,$Hkey,$Hkey        # if(carry) H^=0x1c2_polynomial

    vpunpckhqdq    $Hkey,$Hkey,$HK
    vmovdqa        $Hkey,$Xi
    vpxor        $Hkey,$HK,$HK
    mov        \$4,%r10        # up to H^8
    jmp        .Linit_start_avx
___

sub clmul64x64_avx {
my ($Xhi,$Xi,$Hkey,$HK)=@_;

if (!defined($HK)) {    $HK = $T2;
$code.=<<___;
    vpunpckhqdq    $Xi,$Xi,$T1
    vpunpckhqdq    $Hkey,$Hkey,$T2
    vpxor        $Xi,$T1,$T1        #
    vpxor        $Hkey,$T2,$T2
___
} else {
$code.=<<___;
    vpunpckhqdq    $Xi,$Xi,$T1
    vpxor        $Xi,$T1,$T1        #
___
}
$code.=<<___;
    vpclmulqdq    \$0x11,$Hkey,$Xi,$Xhi    #######
    vpclmulqdq    \$0x00,$Hkey,$Xi,$Xi    #######
    vpclmulqdq    \$0x00,$HK,$T1,$T1    #######
    vpxor        $Xi,$Xhi,$T2        #
    vpxor        $T2,$T1,$T1        #

    vpslldq        \$8,$T1,$T2        #
    vpsrldq        \$8,$T1,$T1
    vpxor        $T2,$Xi,$Xi        #
    vpxor        $T1,$Xhi,$Xhi
___
}

sub reduction_avx {
my ($Xhi,$Xi) = @_;

$code.=<<___;
    vpsllq        \$57,$Xi,$T1        # 1st phase
    vpsllq        \$62,$Xi,$T2
    vpxor        $T1,$T2,$T2        #
    vpsllq        \$63,$Xi,$T1
    vpxor        $T1,$T2,$T2        #
    vpslldq        \$8,$T2,$T1        #
    vpsrldq        \$8,$T2,$T2
    vpxor        $T1,$Xi,$Xi        #
    vpxor        $T2,$Xhi,$Xhi

    vpsrlq        \$1,$Xi,$T2        # 2nd phase
    vpxor        $Xi,$Xhi,$Xhi
    vpxor        $T2,$Xi,$Xi        #
    vpsrlq        \$5,$T2,$T2
    vpxor        $T2,$Xi,$Xi        #
    vpsrlq        \$1,$Xi,$Xi        #
    vpxor        $Xhi,$Xi,$Xi        #
___
}

$code.=<<___;
.align    32
.Linit_loop_avx:
    vpalignr    \$8,$T1,$T2,$T3        # low part is H.lo^H.hi...
    vmovdqu        $T3,-0x10($Htbl)    # save Karatsuba "salt"
___
    &clmul64x64_avx    ($Xhi,$Xi,$Hkey,$HK);    # calculate H^3,5,7
    &reduction_avx    ($Xhi,$Xi);
$code.=<<___;
.Linit_start_avx:
    vmovdqa        $Xi,$T3
___
    &clmul64x64_avx    ($Xhi,$Xi,$Hkey,$HK);    # calculate H^2,4,6,8
    &reduction_avx    ($Xhi,$Xi);
$code.=<<___;
    vpshufd        \$0b01001110,$T3,$T1
    vpshufd        \$0b01001110,$Xi,$T2
    vpxor        $T3,$T1,$T1        # Karatsuba pre-processing
    vmovdqu        $T3,0x00($Htbl)        # save H^1,3,5,7
    vpxor        $Xi,$T2,$T2        # Karatsuba pre-processing
    vmovdqu        $Xi,0x10($Htbl)        # save H^2,4,6,8
    lea        0x30($Htbl),$Htbl
    sub        \$1,%r10
    jnz        .Linit_loop_avx

    vpalignr    \$8,$T2,$T1,$T3        # last "salt" is flipped
    vmovdqu        $T3,-0x10($Htbl)

    vzeroupper
___
$code.=<<___ if ($win64);
    movaps    (%rsp),%xmm6
    lea    0x18(%rsp),%rsp
.LSEH_end_gcm_init_avx:
___
$code.=<<___;
    ret
.cfi_endproc
.size    gcm_init_avx,.-gcm_init_avx
___
} else {
$code.=<<___;
    jmp    .L_init_clmul
.cfi_endproc
.size    gcm_init_avx,.-gcm_init_avx
___
}

$code.=<<___;
.globl    gcm_gmult_avx
.type    gcm_gmult_avx,\@abi-omnipotent
.align    32
gcm_gmult_avx:
.cfi_startproc
    endbranch
    jmp    .L_gmult_clmul
.cfi_endproc
.size    gcm_gmult_avx,.-gcm_gmult_avx
___

$code.=<<___;
.globl    gcm_ghash_avx
.type    gcm_ghash_avx,\@abi-omnipotent
.align    32
gcm_ghash_avx:
.cfi_startproc
    endbranch
___
if ($avx) {
my ($Xip,$Htbl,$inp,$len)=@_4args;
my ($Xlo,$Xhi,$Xmi,
    $Zlo,$Zhi,$Zmi,
    $Hkey,$HK,$T1,$T2,
    $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));

$code.=<<___ if ($win64);
    lea    -0x88(%rsp),%rax
.LSEH_begin_gcm_ghash_avx:
    # I can't trust assembler to use specific encoding:-(
    .byte    0x48,0x8d,0x60,0xe0        #lea    -0x20(%rax),%rsp
    .byte    0x0f,0x29,0x70,0xe0        #movaps    %xmm6,-0x20(%rax)
    .byte    0x0f,0x29,0x78,0xf0        #movaps    %xmm7,-0x10(%rax)
    .byte    0x44,0x0f,0x29,0x00        #movaps    %xmm8,0(%rax)
    .byte    0x44,0x0f,0x29,0x48,0x10    #movaps    %xmm9,0x10(%rax)
    .byte    0x44,0x0f,0x29,0x50,0x20    #movaps    %xmm10,0x20(%rax)
    .byte    0x44,0x0f,0x29,0x58,0x30    #movaps    %xmm11,0x30(%rax)
    .byte    0x44,0x0f,0x29,0x60,0x40    #movaps    %xmm12,0x40(%rax)
    .byte    0x44,0x0f,0x29,0x68,0x50    #movaps    %xmm13,0x50(%rax)
    .byte    0x44,0x0f,0x29,0x70,0x60    #movaps    %xmm14,0x60(%rax)
    .byte    0x44,0x0f,0x29,0x78,0x70    #movaps    %xmm15,0x70(%rax)
___
$code.=<<___;
    vzeroupper

    vmovdqu        ($Xip),$Xi        # load $Xi
    lea        .L0x1c2_polynomial(%rip),%r10
    lea        0x40($Htbl),$Htbl    # size optimization
    vmovdqu        .Lbswap_mask(%rip),$bswap
    vpshufb        $bswap,$Xi,$Xi
    cmp        \$0x80,$len
    jb        .Lshort_avx
    sub        \$0x80,$len

    vmovdqu        0x70($inp),$Ii        # I[7]
    vmovdqu        0x00-0x40($Htbl),$Hkey    # $Hkey^1
    vpshufb        $bswap,$Ii,$Ii
    vmovdqu        0x20-0x40($Htbl),$HK

    vpunpckhqdq    $Ii,$Ii,$T2
     vmovdqu    0x60($inp),$Ij        # I[6]
    vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
    vpxor        $Ii,$T2,$T2
     vpshufb    $bswap,$Ij,$Ij
    vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
     vmovdqu    0x10-0x40($Htbl),$Hkey    # $Hkey^2
     vpunpckhqdq    $Ij,$Ij,$T1
     vmovdqu    0x50($inp),$Ii        # I[5]
    vpclmulqdq    \$0x00,$HK,$T2,$Xmi
     vpxor        $Ij,$T1,$T1

     vpshufb    $bswap,$Ii,$Ii
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
     vpunpckhqdq    $Ii,$Ii,$T2
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
     vmovdqu    0x30-0x40($Htbl),$Hkey    # $Hkey^3
     vpxor        $Ii,$T2,$T2
     vmovdqu    0x40($inp),$Ij        # I[4]
    vpclmulqdq    \$0x10,$HK,$T1,$Zmi
     vmovdqu    0x50-0x40($Htbl),$HK

     vpshufb    $bswap,$Ij,$Ij
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
    vpxor        $Xhi,$Zhi,$Zhi
     vpunpckhqdq    $Ij,$Ij,$T1
    vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
     vmovdqu    0x40-0x40($Htbl),$Hkey    # $Hkey^4
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T2,$Xmi
     vpxor        $Ij,$T1,$T1

     vmovdqu    0x30($inp),$Ii        # I[3]
    vpxor        $Zlo,$Xlo,$Xlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
    vpxor        $Zhi,$Xhi,$Xhi
     vpshufb    $bswap,$Ii,$Ii
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
     vmovdqu    0x60-0x40($Htbl),$Hkey    # $Hkey^5
    vpxor        $Zmi,$Xmi,$Xmi
     vpunpckhqdq    $Ii,$Ii,$T2
    vpclmulqdq    \$0x10,$HK,$T1,$Zmi
     vmovdqu    0x80-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2

     vmovdqu    0x20($inp),$Ij        # I[2]
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
    vpxor        $Xhi,$Zhi,$Zhi
     vpshufb    $bswap,$Ij,$Ij
    vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
     vmovdqu    0x70-0x40($Htbl),$Hkey    # $Hkey^6
    vpxor        $Xmi,$Zmi,$Zmi
     vpunpckhqdq    $Ij,$Ij,$T1
    vpclmulqdq    \$0x00,$HK,$T2,$Xmi
     vpxor        $Ij,$T1,$T1

     vmovdqu    0x10($inp),$Ii        # I[1]
    vpxor        $Zlo,$Xlo,$Xlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
    vpxor        $Zhi,$Xhi,$Xhi
     vpshufb    $bswap,$Ii,$Ii
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
     vmovdqu    0x90-0x40($Htbl),$Hkey    # $Hkey^7
    vpxor        $Zmi,$Xmi,$Xmi
     vpunpckhqdq    $Ii,$Ii,$T2
    vpclmulqdq    \$0x10,$HK,$T1,$Zmi
     vmovdqu    0xb0-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2

     vmovdqu    ($inp),$Ij        # I[0]
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
    vpxor        $Xhi,$Zhi,$Zhi
     vpshufb    $bswap,$Ij,$Ij
    vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
     vmovdqu    0xa0-0x40($Htbl),$Hkey    # $Hkey^8
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x10,$HK,$T2,$Xmi

    lea        0x80($inp),$inp
    cmp        \$0x80,$len
    jb        .Ltail_avx

    vpxor        $Xi,$Ij,$Ij        # accumulate $Xi
    sub        \$0x80,$len
    jmp        .Loop8x_avx

.align    32
.Loop8x_avx:
    vpunpckhqdq    $Ij,$Ij,$T1
     vmovdqu    0x70($inp),$Ii        # I[7]
    vpxor        $Xlo,$Zlo,$Zlo
    vpxor        $Ij,$T1,$T1
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xi
     vpshufb    $bswap,$Ii,$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xo
     vmovdqu    0x00-0x40($Htbl),$Hkey    # $Hkey^1
     vpunpckhqdq    $Ii,$Ii,$T2
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Tred
     vmovdqu    0x20-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2

      vmovdqu    0x60($inp),$Ij        # I[6]
     vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
    vpxor        $Zlo,$Xi,$Xi        # collect result
      vpshufb    $bswap,$Ij,$Ij
     vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
    vxorps        $Zhi,$Xo,$Xo
      vmovdqu    0x10-0x40($Htbl),$Hkey    # $Hkey^2
     vpunpckhqdq    $Ij,$Ij,$T1
     vpclmulqdq    \$0x00,$HK,  $T2,$Xmi
    vpxor        $Zmi,$Tred,$Tred
     vxorps        $Ij,$T1,$T1

      vmovdqu    0x50($inp),$Ii        # I[5]
    vpxor        $Xi,$Tred,$Tred        # aggregated Karatsuba post-processing
     vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
    vpxor        $Xo,$Tred,$Tred
    vpslldq        \$8,$Tred,$T2
     vpxor        $Xlo,$Zlo,$Zlo
     vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
    vpsrldq        \$8,$Tred,$Tred
    vpxor        $T2, $Xi, $Xi
      vmovdqu    0x30-0x40($Htbl),$Hkey    # $Hkey^3
      vpshufb    $bswap,$Ii,$Ii
    vxorps        $Tred,$Xo, $Xo
     vpxor        $Xhi,$Zhi,$Zhi
     vpunpckhqdq    $Ii,$Ii,$T2
     vpclmulqdq    \$0x10,$HK,  $T1,$Zmi
      vmovdqu    0x50-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2
     vpxor        $Xmi,$Zmi,$Zmi

      vmovdqu    0x40($inp),$Ij        # I[4]
    vpalignr    \$8,$Xi,$Xi,$Tred    # 1st phase
     vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
      vpshufb    $bswap,$Ij,$Ij
     vpxor        $Zlo,$Xlo,$Xlo
     vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
      vmovdqu    0x40-0x40($Htbl),$Hkey    # $Hkey^4
     vpunpckhqdq    $Ij,$Ij,$T1
     vpxor        $Zhi,$Xhi,$Xhi
     vpclmulqdq    \$0x00,$HK,  $T2,$Xmi
     vxorps        $Ij,$T1,$T1
     vpxor        $Zmi,$Xmi,$Xmi

      vmovdqu    0x30($inp),$Ii        # I[3]
    vpclmulqdq    \$0x10,(%r10),$Xi,$Xi
     vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
      vpshufb    $bswap,$Ii,$Ii
     vpxor        $Xlo,$Zlo,$Zlo
     vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
      vmovdqu    0x60-0x40($Htbl),$Hkey    # $Hkey^5
     vpunpckhqdq    $Ii,$Ii,$T2
     vpxor        $Xhi,$Zhi,$Zhi
     vpclmulqdq    \$0x10,$HK,  $T1,$Zmi
      vmovdqu    0x80-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2
     vpxor        $Xmi,$Zmi,$Zmi

      vmovdqu    0x20($inp),$Ij        # I[2]
     vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
      vpshufb    $bswap,$Ij,$Ij
     vpxor        $Zlo,$Xlo,$Xlo
     vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
      vmovdqu    0x70-0x40($Htbl),$Hkey    # $Hkey^6
     vpunpckhqdq    $Ij,$Ij,$T1
     vpxor        $Zhi,$Xhi,$Xhi
     vpclmulqdq    \$0x00,$HK,  $T2,$Xmi
     vpxor        $Ij,$T1,$T1
     vpxor        $Zmi,$Xmi,$Xmi
    vxorps        $Tred,$Xi,$Xi

      vmovdqu    0x10($inp),$Ii        # I[1]
    vpalignr    \$8,$Xi,$Xi,$Tred    # 2nd phase
     vpclmulqdq    \$0x00,$Hkey,$Ij,$Zlo
      vpshufb    $bswap,$Ii,$Ii
     vpxor        $Xlo,$Zlo,$Zlo
     vpclmulqdq    \$0x11,$Hkey,$Ij,$Zhi
      vmovdqu    0x90-0x40($Htbl),$Hkey    # $Hkey^7
    vpclmulqdq    \$0x10,(%r10),$Xi,$Xi
    vxorps        $Xo,$Tred,$Tred
     vpunpckhqdq    $Ii,$Ii,$T2
     vpxor        $Xhi,$Zhi,$Zhi
     vpclmulqdq    \$0x10,$HK,  $T1,$Zmi
      vmovdqu    0xb0-0x40($Htbl),$HK
     vpxor        $Ii,$T2,$T2
     vpxor        $Xmi,$Zmi,$Zmi

      vmovdqu    ($inp),$Ij        # I[0]
     vpclmulqdq    \$0x00,$Hkey,$Ii,$Xlo
      vpshufb    $bswap,$Ij,$Ij
     vpclmulqdq    \$0x11,$Hkey,$Ii,$Xhi
      vmovdqu    0xa0-0x40($Htbl),$Hkey    # $Hkey^8
    vpxor        $Tred,$Ij,$Ij
     vpclmulqdq    \$0x10,$HK,  $T2,$Xmi
    vpxor        $Xi,$Ij,$Ij        # accumulate $Xi

    lea        0x80($inp),$inp
    sub        \$0x80,$len
    jnc        .Loop8x_avx

    add        \$0x80,$len
    jmp        .Ltail_no_xor_avx

.align    32
.Lshort_avx:
    vmovdqu        -0x10($inp,$len),$Ii    # very last word
    lea        ($inp,$len),$inp
    vmovdqu        0x00-0x40($Htbl),$Hkey    # $Hkey^1
    vmovdqu        0x20-0x40($Htbl),$HK
    vpshufb        $bswap,$Ii,$Ij

    vmovdqa        $Xlo,$Zlo        # subtle way to zero $Zlo,
    vmovdqa        $Xhi,$Zhi        # $Zhi and
    vmovdqa        $Xmi,$Zmi        # $Zmi
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x20($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x10-0x40($Htbl),$Hkey    # $Hkey^2
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vpsrldq        \$8,$HK,$HK
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x30($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x30-0x40($Htbl),$Hkey    # $Hkey^3
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vmovdqu        0x50-0x40($Htbl),$HK
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x40($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x40-0x40($Htbl),$Hkey    # $Hkey^4
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vpsrldq        \$8,$HK,$HK
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x50($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x60-0x40($Htbl),$Hkey    # $Hkey^5
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vmovdqu        0x80-0x40($Htbl),$HK
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x60($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x70-0x40($Htbl),$Hkey    # $Hkey^6
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vpsrldq        \$8,$HK,$HK
    sub        \$0x10,$len
    jz        .Ltail_avx

    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
     vmovdqu    -0x70($inp),$Ii
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vmovdqu        0x90-0x40($Htbl),$Hkey    # $Hkey^7
     vpshufb    $bswap,$Ii,$Ij
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi
    vmovq        0xb8-0x40($Htbl),$HK
    sub        \$0x10,$len
    jmp        .Ltail_avx

.align    32
.Ltail_avx:
    vpxor        $Xi,$Ij,$Ij        # accumulate $Xi
.Ltail_no_xor_avx:
    vpunpckhqdq    $Ij,$Ij,$T1
    vpxor        $Xlo,$Zlo,$Zlo
    vpclmulqdq    \$0x00,$Hkey,$Ij,$Xlo
    vpxor        $Ij,$T1,$T1
    vpxor        $Xhi,$Zhi,$Zhi
    vpclmulqdq    \$0x11,$Hkey,$Ij,$Xhi
    vpxor        $Xmi,$Zmi,$Zmi
    vpclmulqdq    \$0x00,$HK,$T1,$Xmi

    vmovdqu        (%r10),$Tred

    vpxor        $Xlo,$Zlo,$Xi
    vpxor        $Xhi,$Zhi,$Xo
    vpxor        $Xmi,$Zmi,$Zmi

    vpxor        $Xi, $Zmi,$Zmi        # aggregated Karatsuba post-processing
    vpxor        $Xo, $Zmi,$Zmi
    vpslldq        \$8, $Zmi,$T2
    vpsrldq        \$8, $Zmi,$Zmi
    vpxor        $T2, $Xi, $Xi
    vpxor        $Zmi,$Xo, $Xo

    vpclmulqdq    \$0x10,$Tred,$Xi,$T2    # 1st phase
    vpalignr    \$8,$Xi,$Xi,$Xi
    vpxor        $T2,$Xi,$Xi

    vpclmulqdq    \$0x10,$Tred,$Xi,$T2    # 2nd phase
    vpalignr    \$8,$Xi,$Xi,$Xi
    vpxor        $Xo,$Xi,$Xi
    vpxor        $T2,$Xi,$Xi

    cmp        \$0,$len
    jne        .Lshort_avx

    vpshufb        $bswap,$Xi,$Xi
    vmovdqu        $Xi,($Xip)
    vzeroupper
___
$code.=<<___ if ($win64);
    movaps    (%rsp),%xmm6
    movaps    0x10(%rsp),%xmm7
    movaps    0x20(%rsp),%xmm8
    movaps    0x30(%rsp),%xmm9
    movaps    0x40(%rsp),%xmm10
    movaps    0x50(%rsp),%xmm11
    movaps    0x60(%rsp),%xmm12
    movaps    0x70(%rsp),%xmm13
    movaps    0x80(%rsp),%xmm14
    movaps    0x90(%rsp),%xmm15
    lea    0xa8(%rsp),%rsp
.LSEH_end_gcm_ghash_avx:
___
$code.=<<___;
    ret
.cfi_endproc
.size    gcm_ghash_avx,.-gcm_ghash_avx
___
} else {
$code.=<<___;
    jmp    .L_ghash_clmul
.cfi_endproc
.size    gcm_ghash_avx,.-gcm_ghash_avx
___
}

$code.=<<___;
.align    64
.Lbswap_mask:
    .byte    15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
.L0x1c2_polynomial:
    .byte    1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
.L7_mask:
    .long    7,0,7,0
.L7_mask_poly:
    .long    7,0,`0xE1<<1`,0
.align    64
.type    .Lrem_4bit,\@object
.Lrem_4bit:
    .long    0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
    .long    0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
    .long    0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
    .long    0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
.type    .Lrem_8bit,\@object
.Lrem_8bit:
    .value    0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
    .value    0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
    .value    0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
    .value    0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
    .value    0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
    .value    0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
    .value    0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
    .value    0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
    .value    0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
    .value    0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
    .value    0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
    .value    0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
    .value    0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
    .value    0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
    .value    0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
    .value    0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
    .value    0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
    .value    0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
    .value    0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
    .value    0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
    .value    0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
    .value    0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
    .value    0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
    .value    0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
    .value    0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
    .value    0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
    .value    0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
    .value    0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
    .value    0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
    .value    0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
    .value    0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
    .value    0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE

.asciz    "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align    64
___

# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
#        CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";

$code.=<<___;
.extern    __imp_RtlVirtualUnwind
.type    se_handler,\@abi-omnipotent
.align    16
se_handler:
    push    %rsi
    push    %rdi
    push    %rbx
    push    %rbp
    push    %r12
    push    %r13
    push    %r14
    push    %r15
    pushfq
    sub    \$64,%rsp

    mov    120($context),%rax    # pull context->Rax
    mov    248($context),%rbx    # pull context->Rip

    mov    8($disp),%rsi        # disp->ImageBase
    mov    56($disp),%r11        # disp->HandlerData

    mov    0(%r11),%r10d        # HandlerData[0]
    lea    (%rsi,%r10),%r10    # prologue label
    cmp    %r10,%rbx        # context->Rip<prologue label
    jb    .Lin_prologue

    mov    152($context),%rax    # pull context->Rsp

    mov    4(%r11),%r10d        # HandlerData[1]
    lea    (%rsi,%r10),%r10    # epilogue label
    cmp    %r10,%rbx        # context->Rip>=epilogue label
    jae    .Lin_prologue

    lea    48+280(%rax),%rax    # adjust "rsp"

    mov    -8(%rax),%rbx
    mov    -16(%rax),%rbp
    mov    -24(%rax),%r12
    mov    -32(%rax),%r13
    mov    -40(%rax),%r14
    mov    -48(%rax),%r15
    mov    %rbx,144($context)    # restore context->Rbx
    mov    %rbp,160($context)    # restore context->Rbp
    mov    %r12,216($context)    # restore context->R12
    mov    %r13,224($context)    # restore context->R13
    mov    %r14,232($context)    # restore context->R14
    mov    %r15,240($context)    # restore context->R15

.Lin_prologue:
    mov    8(%rax),%rdi
    mov    16(%rax),%rsi
    mov    %rax,152($context)    # restore context->Rsp
    mov    %rsi,168($context)    # restore context->Rsi
    mov    %rdi,176($context)    # restore context->Rdi

    mov    40($disp),%rdi        # disp->ContextRecord
    mov    $context,%rsi        # context
    mov    \$`1232/8`,%ecx        # sizeof(CONTEXT)
    .long    0xa548f3fc        # cld; rep movsq

    mov    $disp,%rsi
    xor    %rcx,%rcx        # arg1, UNW_FLAG_NHANDLER
    mov    8(%rsi),%rdx        # arg2, disp->ImageBase
    mov    0(%rsi),%r8        # arg3, disp->ControlPc
    mov    16(%rsi),%r9        # arg4, disp->FunctionEntry
    mov    40(%rsi),%r10        # disp->ContextRecord
    lea    56(%rsi),%r11        # &disp->HandlerData
    lea    24(%rsi),%r12        # &disp->EstablisherFrame
    mov    %r10,32(%rsp)        # arg5
    mov    %r11,40(%rsp)        # arg6
    mov    %r12,48(%rsp)        # arg7
    mov    %rcx,56(%rsp)        # arg8, (NULL)
    call    *__imp_RtlVirtualUnwind(%rip)

    mov    \$1,%eax        # ExceptionContinueSearch
    add    \$64,%rsp
    popfq
    pop    %r15
    pop    %r14
    pop    %r13
    pop    %r12
    pop    %rbp
    pop    %rbx
    pop    %rdi
    pop    %rsi
    ret
.size    se_handler,.-se_handler

.section    .pdata
.align    4
    .rva    .LSEH_begin_gcm_gmult_4bit
    .rva    .LSEH_end_gcm_gmult_4bit
    .rva    .LSEH_info_gcm_gmult_4bit

    .rva    .LSEH_begin_gcm_ghash_4bit
    .rva    .LSEH_end_gcm_ghash_4bit
    .rva    .LSEH_info_gcm_ghash_4bit

    .rva    .LSEH_begin_gcm_init_clmul
    .rva    .LSEH_end_gcm_init_clmul
    .rva    .LSEH_info_gcm_init_clmul

    .rva    .LSEH_begin_gcm_ghash_clmul
    .rva    .LSEH_end_gcm_ghash_clmul
    .rva    .LSEH_info_gcm_ghash_clmul
___
$code.=<<___    if ($avx);
    .rva    .LSEH_begin_gcm_init_avx
    .rva    .LSEH_end_gcm_init_avx
    .rva    .LSEH_info_gcm_init_clmul

    .rva    .LSEH_begin_gcm_ghash_avx
    .rva    .LSEH_end_gcm_ghash_avx
    .rva    .LSEH_info_gcm_ghash_clmul
___
$code.=<<___;
.section    .xdata
.align    8
.LSEH_info_gcm_gmult_4bit:
    .byte    9,0,0,0
    .rva    se_handler
    .rva    .Lgmult_prologue,.Lgmult_epilogue    # HandlerData
.LSEH_info_gcm_ghash_4bit:
    .byte    9,0,0,0
    .rva    se_handler
    .rva    .Lghash_prologue,.Lghash_epilogue    # HandlerData
.LSEH_info_gcm_init_clmul:
    .byte    0x01,0x08,0x03,0x00
    .byte    0x08,0x68,0x00,0x00    #movaps    0x00(rsp),xmm6
    .byte    0x04,0x22,0x00,0x00    #sub    rsp,0x18
.LSEH_info_gcm_ghash_clmul:
    .byte    0x01,0x33,0x16,0x00
    .byte    0x33,0xf8,0x09,0x00    #movaps 0x90(rsp),xmm15
    .byte    0x2e,0xe8,0x08,0x00    #movaps 0x80(rsp),xmm14
    .byte    0x29,0xd8,0x07,0x00    #movaps 0x70(rsp),xmm13
    .byte    0x24,0xc8,0x06,0x00    #movaps 0x60(rsp),xmm12
    .byte    0x1f,0xb8,0x05,0x00    #movaps 0x50(rsp),xmm11
    .byte    0x1a,0xa8,0x04,0x00    #movaps 0x40(rsp),xmm10
    .byte    0x15,0x98,0x03,0x00    #movaps 0x30(rsp),xmm9
    .byte    0x10,0x88,0x02,0x00    #movaps 0x20(rsp),xmm8
    .byte    0x0c,0x78,0x01,0x00    #movaps 0x10(rsp),xmm7
    .byte    0x08,0x68,0x00,0x00    #movaps 0x00(rsp),xmm6
    .byte    0x04,0x01,0x15,0x00    #sub    rsp,0xa8
___
}

$code =~ s/\`([^\`]*)\`/eval($1)/gem;

print $code;

close STDOUT or die "error closing STDOUT: $!";

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ ok ]

:: Make Dir ::
 
[ ok ]
:: Make File ::
 
[ ok ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.1 [PHP 8 Update] [02.02.2022] maintained byC99Shell Github | Generation time: 0.9679 ]--