!C99Shell v. 2.1 [PHP 8 Update] [02.02.2022]!

Software: Apache/2.4.53 (Unix) OpenSSL/1.1.1o PHP/7.4.29 mod_perl/2.0.12 Perl/v5.34.1. PHP/7.4.29 

uname -a: Linux vps-2738122-x 4.15.0-213-generic #224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023 x86_64 

uid=1(daemon) gid=1(daemon) grupos=1(daemon) 

Safe-mode: OFF (not secure)

/opt/apex_tdfonline/proyectos/tdfonline/www/docs/openssl/crypto/modes/asm/   drwxr-xr-x
Free 14.57 GB of 61.93 GB (23.53%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     ghashv8-armx.pl (21.86 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#! /usr/bin/env perl
# Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
#
# June 2014
#
# Initial version was developed in tight cooperation with Ard
# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
# Just like aesv8-armx.pl this module supports both AArch32 and
# AArch64 execution modes.
#
# July 2014
#
# Implement 2x aggregated reduction [see ghash-x86.pl for background
# information].
#
# November 2017
#
# AArch64 register bank to "accommodate" 4x aggregated reduction and
# improve performance by 20-70% depending on processor.
#
# Current performance in cycles per processed byte:
#
#        64-bit PMULL    32-bit PMULL    32-bit NEON(*)
# Apple A7    0.58        0.92        5.62
# Cortex-A53    0.85        1.01        8.39
# Cortex-A57    0.73        1.17        7.61
# Denver    0.51        0.65        6.02
# Mongoose    0.65        1.10        8.06
# Kryo        0.76        1.16        8.00
# ThunderX2    1.05
#
# (*)    presented for reference/comparison purposes;

# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";

open OUT,"| \"$^X\" $xlate $flavour \"$output\""
    or die "can't call $xlate: $!";
*STDOUT=*OUT;

$Xi="x0";    # argument block
$Htbl="x1";
$inp="x2";
$len="x3";

$inc="x12";

{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
my $_byte = ($flavour =~ /win/ ? "DCB" : ".byte");

$code=<<___;
#include "arm_arch.h"

#if __ARM_MAX_ARCH__>=7
___
$code.=".arch    armv8-a+crypto\n.text\n"    if ($flavour =~ /64/);
$code.=<<___                    if ($flavour !~ /64/);
.fpu    neon
#ifdef __thumb2__
.syntax        unified
.thumb
# define INST(a,b,c,d) $_byte  c,0xef,a,b
#else
.code  32
# define INST(a,b,c,d) $_byte  a,b,c,0xf2
#endif

.text
___

################################################################################
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
#
# input:    128-bit H - secret parameter E(K,0^128)
# output:    precomputed table filled with degrees of twisted H;
#        H is twisted to handle reverse bitness of GHASH;
#        only few of 16 slots of Htable[16] are used;
#        data is opaque to outside world (which allows to
#        optimize the code independently);
#
$code.=<<___;
.global    gcm_init_v8
.type    gcm_init_v8,%function
.align    4
gcm_init_v8:
___
$code.=<<___    if ($flavour =~ /64/);
    AARCH64_VALID_CALL_TARGET
___
$code.=<<___;
    vld1.64        {$t1},[x1]        @ load input H
    vmov.i8        $xC2,#0xe1
    vshl.i64    $xC2,$xC2,#57        @ 0xc2.0
    vext.8        $IN,$t1,$t1,#8
    vshr.u64    $t2,$xC2,#63
    vdup.32        $t1,${t1}[1]
    vext.8        $t0,$t2,$xC2,#8        @ t0=0xc2....01
    vshr.u64    $t2,$IN,#63
    vshr.s32    $t1,$t1,#31        @ broadcast carry bit
    vand        $t2,$t2,$t0
    vshl.i64    $IN,$IN,#1
    vext.8        $t2,$t2,$t2,#8
    vand        $t0,$t0,$t1
    vorr        $IN,$IN,$t2        @ H<<<=1
    veor        $H,$IN,$t0        @ twisted H
    vst1.64        {$H},[x0],#16        @ store Htable[0]

    @ calculate H^2
    vext.8        $t0,$H,$H,#8        @ Karatsuba pre-processing
    vpmull.p64    $Xl,$H,$H
    veor        $t0,$t0,$H
    vpmull2.p64    $Xh,$H,$H
    vpmull.p64    $Xm,$t0,$t0

    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $H2,$Xl,$t2

    vext.8        $t1,$H2,$H2,#8        @ Karatsuba pre-processing
    veor        $t1,$t1,$H2
    vext.8        $Hhl,$t0,$t1,#8        @ pack Karatsuba pre-processed
    vst1.64        {$Hhl-$H2},[x0],#32    @ store Htable[1..2]
___
if ($flavour =~ /64/) {
my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));
my ($H3,$H34k,$H4,$H5,$H56k,$H6,$H7,$H78k,$H8) = map("q$_",(15..23));

$code.=<<___;
    @ calculate H^3 and H^4
    vpmull.p64    $Xl,$H, $H2
     vpmull.p64    $Yl,$H2,$H2
    vpmull2.p64    $Xh,$H, $H2
     vpmull2.p64    $Yh,$H2,$H2
    vpmull.p64    $Xm,$t0,$t1
     vpmull.p64    $Ym,$t1,$t1

    vext.8        $t0,$Xl,$Xh,#8        @ Karatsuba post-processing
     vext.8        $t1,$Yl,$Yh,#8
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t0
     veor        $t3,$Yl,$Yh
     veor        $Ym,$Ym,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase
     veor        $Ym,$Ym,$t3
     vpmull.p64    $t3,$Yl,$xC2

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
     vmov        $Yh#lo,$Ym#hi
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vmov        $Ym#hi,$Yl#lo
    veor        $Xl,$Xm,$t2
     veor        $Yl,$Ym,$t3

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase
     vext.8        $t3,$Yl,$Yl,#8
    vpmull.p64    $Xl,$Xl,$xC2
     vpmull.p64    $Yl,$Yl,$xC2
    veor        $t2,$t2,$Xh
     veor        $t3,$t3,$Yh
    veor        $H3, $Xl,$t2        @ H^3
     veor        $H4,$Yl,$t3        @ H^4

    vext.8        $t0,$H3, $H3,#8        @ Karatsuba pre-processing
     vext.8        $t1,$H4,$H4,#8
     vext.8        $t2,$H2,$H2,#8
    veor        $t0,$t0,$H3
     veor        $t1,$t1,$H4
     veor        $t2,$t2,$H2
    vext.8        $H34k,$t0,$t1,#8        @ pack Karatsuba pre-processed
    vst1.64        {$H3-$H4},[x0],#48        @ store Htable[3..5]

    @ calculate H^5 and H^6
    vpmull.p64    $Xl,$H2, $H3
     vpmull.p64    $Yl,$H3,$H3
    vpmull2.p64    $Xh,$H2, $H3
     vpmull2.p64    $Yh,$H3,$H3
    vpmull.p64    $Xm,$t0,$t2
     vpmull.p64    $Ym,$t0,$t0

    vext.8        $t0,$Xl,$Xh,#8        @ Karatsuba post-processing
     vext.8        $t1,$Yl,$Yh,#8
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t0
     veor        $t3,$Yl,$Yh
     veor        $Ym,$Ym,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase
     veor        $Ym,$Ym,$t3
     vpmull.p64    $t3,$Yl,$xC2

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
     vmov        $Yh#lo,$Ym#hi
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vmov        $Ym#hi,$Yl#lo
    veor        $Xl,$Xm,$t2
     veor        $Yl,$Ym,$t3

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase
     vext.8        $t3,$Yl,$Yl,#8
    vpmull.p64    $Xl,$Xl,$xC2
     vpmull.p64    $Yl,$Yl,$xC2
    veor        $t2,$t2,$Xh
     veor        $t3,$t3,$Yh
    veor        $H5,$Xl,$t2        @ H^5
     veor        $H6,$Yl,$t3        @ H^6

    vext.8        $t0,$H5, $H5,#8        @ Karatsuba pre-processing
     vext.8        $t1,$H6,$H6,#8
     vext.8        $t2,$H2,$H2,#8
    veor        $t0,$t0,$H5
     veor        $t1,$t1,$H6
     veor        $t2,$t2,$H2
    vext.8        $H56k,$t0,$t1,#8        @ pack Karatsuba pre-processed
    vst1.64        {$H5-$H6},[x0],#48        @ store Htable[6..8]

    @ calculate H^7 and H^8
    vpmull.p64    $Xl,$H2,$H5
     vpmull.p64    $Yl,$H2,$H6
    vpmull2.p64    $Xh,$H2,$H5
     vpmull2.p64    $Yh,$H2,$H6
    vpmull.p64    $Xm,$t0,$t2
     vpmull.p64    $Ym,$t1,$t2

    vext.8        $t0,$Xl,$Xh,#8        @ Karatsuba post-processing
     vext.8        $t1,$Yl,$Yh,#8
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t0
     veor        $t3,$Yl,$Yh
     veor        $Ym,$Ym,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase
     veor        $Ym,$Ym,$t3
     vpmull.p64    $t3,$Yl,$xC2

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
     vmov        $Yh#lo,$Ym#hi
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vmov        $Ym#hi,$Yl#lo
    veor        $Xl,$Xm,$t2
     veor        $Yl,$Ym,$t3

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase
     vext.8        $t3,$Yl,$Yl,#8
    vpmull.p64    $Xl,$Xl,$xC2
     vpmull.p64    $Yl,$Yl,$xC2
    veor        $t2,$t2,$Xh
     veor        $t3,$t3,$Yh
    veor        $H7,$Xl,$t2        @ H^7
     veor        $H8,$Yl,$t3        @ H^8

    vext.8        $t0,$H7,$H7,#8        @ Karatsuba pre-processing
     vext.8        $t1,$H8,$H8,#8
    veor        $t0,$t0,$H7
     veor        $t1,$t1,$H8
    vext.8        $H78k,$t0,$t1,#8        @ pack Karatsuba pre-processed
    vst1.64        {$H7-$H8},[x0]        @ store Htable[9..11]
___
}
$code.=<<___;
    ret
.size    gcm_init_v8,.-gcm_init_v8
___
################################################################################
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
#
# input:    Xi - current hash value;
#        Htable - table precomputed in gcm_init_v8;
# output:    Xi - next hash value Xi;
#
$code.=<<___;
.global    gcm_gmult_v8
.type    gcm_gmult_v8,%function
.align    4
gcm_gmult_v8:
___
$code.=<<___    if ($flavour =~ /64/);
    AARCH64_VALID_CALL_TARGET
___
$code.=<<___;
    vld1.64        {$t1},[$Xi]        @ load Xi
    vmov.i8        $xC2,#0xe1
    vld1.64        {$H-$Hhl},[$Htbl]    @ load twisted H, ...
    vshl.u64    $xC2,$xC2,#57
#ifndef __ARMEB__
    vrev64.8    $t1,$t1
#endif
    vext.8        $IN,$t1,$t1,#8

    vpmull.p64    $Xl,$H,$IN        @ H.lo·Xi.lo
    veor        $t1,$t1,$IN        @ Karatsuba pre-processing
    vpmull2.p64    $Xh,$H,$IN        @ H.hi·Xi.hi
    vpmull.p64    $Xm,$Hhl,$t1        @ (H.lo+H.hi)·(Xi.lo+Xi.hi)

    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $Xl,$Xl,$t2

#ifndef __ARMEB__
    vrev64.8    $Xl,$Xl
#endif
    vext.8        $Xl,$Xl,$Xl,#8
    vst1.64        {$Xl},[$Xi]        @ write out Xi

    ret
.size    gcm_gmult_v8,.-gcm_gmult_v8
___
################################################################################
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#
# input:    table precomputed in gcm_init_v8;
#        current hash value Xi;
#        pointer to input data;
#        length of input data in bytes, but divisible by block size;
# output:    next hash value Xi;
#
$code.=<<___;
.global    gcm_ghash_v8
.type    gcm_ghash_v8,%function
.align    4
gcm_ghash_v8:
___
$code.=<<___    if ($flavour =~ /64/);
    AARCH64_VALID_CALL_TARGET
    cmp        $len,#64
    b.hs        .Lgcm_ghash_v8_4x
___
$code.=<<___        if ($flavour !~ /64/);
    vstmdb        sp!,{d8-d15}        @ 32-bit ABI says so
___
$code.=<<___;
    vld1.64        {$Xl},[$Xi]        @ load [rotated] Xi
                        @ "[rotated]" means that
                        @ loaded value would have
                        @ to be rotated in order to
                        @ make it appear as in
                        @ algorithm specification
    subs        $len,$len,#32        @ see if $len is 32 or larger
    mov        $inc,#16        @ $inc is used as post-
                        @ increment for input pointer;
                        @ as loop is modulo-scheduled
                        @ $inc is zeroed just in time
                        @ to preclude overstepping
                        @ inp[len], which means that
                        @ last block[s] are actually
                        @ loaded twice, but last
                        @ copy is not processed
    vld1.64        {$H-$Hhl},[$Htbl],#32    @ load twisted H, ..., H^2
    vmov.i8        $xC2,#0xe1
    vld1.64        {$H2},[$Htbl]
    cclr        $inc,eq            @ is it time to zero $inc?
    vext.8        $Xl,$Xl,$Xl,#8        @ rotate Xi
    vld1.64        {$t0},[$inp],#16    @ load [rotated] I[0]
    vshl.u64    $xC2,$xC2,#57        @ compose 0xc2.0 constant
#ifndef __ARMEB__
    vrev64.8    $t0,$t0
    vrev64.8    $Xl,$Xl
#endif
    vext.8        $IN,$t0,$t0,#8        @ rotate I[0]
    b.lo        .Lodd_tail_v8        @ $len was less than 32
___
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
    #######
    # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
    #    [(H*Ii+1) + (H*Xi+1)] mod P =
    #    [(H*Ii+1) + H^2*(Ii+Xi)] mod P
    #
$code.=<<___;
    vld1.64        {$t1},[$inp],$inc    @ load [rotated] I[1]
#ifndef __ARMEB__
    vrev64.8    $t1,$t1
#endif
    vext.8        $In,$t1,$t1,#8
    veor        $IN,$IN,$Xl        @ I[i]^=Xi
    vpmull.p64    $Xln,$H,$In        @ H·Ii+1
    veor        $t1,$t1,$In        @ Karatsuba pre-processing
    vpmull2.p64    $Xhn,$H,$In
    b        .Loop_mod2x_v8

.align    4
.Loop_mod2x_v8:
    vext.8        $t2,$IN,$IN,#8
    subs        $len,$len,#32        @ is there more data?
    vpmull.p64    $Xl,$H2,$IN        @ H^2.lo·Xi.lo
    cclr        $inc,lo            @ is it time to zero $inc?

     vpmull.p64    $Xmn,$Hhl,$t1
    veor        $t2,$t2,$IN        @ Karatsuba pre-processing
    vpmull2.p64    $Xh,$H2,$IN        @ H^2.hi·Xi.hi
    veor        $Xl,$Xl,$Xln        @ accumulate
    vpmull2.p64    $Xm,$Hhl,$t2        @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
     vld1.64    {$t0},[$inp],$inc    @ load [rotated] I[i+2]

    veor        $Xh,$Xh,$Xhn
     cclr        $inc,eq            @ is it time to zero $inc?
    veor        $Xm,$Xm,$Xmn

    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
     vld1.64    {$t1},[$inp],$inc    @ load [rotated] I[i+3]
#ifndef __ARMEB__
     vrev64.8    $t0,$t0
#endif
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction

#ifndef __ARMEB__
     vrev64.8    $t1,$t1
#endif
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vext.8        $In,$t1,$t1,#8
     vext.8        $IN,$t0,$t0,#8
    veor        $Xl,$Xm,$t2
     vpmull.p64    $Xln,$H,$In        @ H·Ii+1
    veor        $IN,$IN,$Xh        @ accumulate $IN early

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $IN,$IN,$t2
     veor        $t1,$t1,$In        @ Karatsuba pre-processing
    veor        $IN,$IN,$Xl
     vpmull2.p64    $Xhn,$H,$In
    b.hs        .Loop_mod2x_v8        @ there was at least 32 more bytes

    veor        $Xh,$Xh,$t2
    vext.8        $IN,$t0,$t0,#8        @ re-construct $IN
    adds        $len,$len,#32        @ re-construct $len
    veor        $Xl,$Xl,$Xh        @ re-construct $Xl
    b.eq        .Ldone_v8        @ is $len zero?
___
}
$code.=<<___;
.Lodd_tail_v8:
    vext.8        $t2,$Xl,$Xl,#8
    veor        $IN,$IN,$Xl        @ inp^=Xi
    veor        $t1,$t0,$t2        @ $t1 is rotated inp^Xi

    vpmull.p64    $Xl,$H,$IN        @ H.lo·Xi.lo
    veor        $t1,$t1,$IN        @ Karatsuba pre-processing
    vpmull2.p64    $Xh,$H,$IN        @ H.hi·Xi.hi
    vpmull.p64    $Xm,$Hhl,$t1        @ (H.lo+H.hi)·(Xi.lo+Xi.hi)

    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
    veor        $Xm,$Xm,$t2
    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction

    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $Xl,$Xl,$t2

.Ldone_v8:
#ifndef __ARMEB__
    vrev64.8    $Xl,$Xl
#endif
    vext.8        $Xl,$Xl,$Xl,#8
    vst1.64        {$Xl},[$Xi]        @ write out Xi

___
$code.=<<___        if ($flavour !~ /64/);
    vldmia        sp!,{d8-d15}        @ 32-bit ABI says so
___
$code.=<<___;
    ret
.size    gcm_ghash_v8,.-gcm_ghash_v8
___

if ($flavour =~ /64/) {                # 4x subroutine
my ($I0,$j1,$j2,$j3,
    $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));

$code.=<<___;
.type    gcm_ghash_v8_4x,%function
.align    4
gcm_ghash_v8_4x:
.Lgcm_ghash_v8_4x:
    vld1.64        {$Xl},[$Xi]        @ load [rotated] Xi
    vld1.64        {$H-$H2},[$Htbl],#48    @ load twisted H, ..., H^2
    vmov.i8        $xC2,#0xe1
    vld1.64        {$H3-$H4},[$Htbl]    @ load twisted H^3, ..., H^4
    vshl.u64    $xC2,$xC2,#57        @ compose 0xc2.0 constant

    vld1.64        {$I0-$j3},[$inp],#64
#ifndef __ARMEB__
    vrev64.8    $Xl,$Xl
    vrev64.8    $j1,$j1
    vrev64.8    $j2,$j2
    vrev64.8    $j3,$j3
    vrev64.8    $I0,$I0
#endif
    vext.8        $I3,$j3,$j3,#8
    vext.8        $I2,$j2,$j2,#8
    vext.8        $I1,$j1,$j1,#8

    vpmull.p64    $Yl,$H,$I3        @ H·Ii+3
    veor        $j3,$j3,$I3
    vpmull2.p64    $Yh,$H,$I3
    vpmull.p64    $Ym,$Hhl,$j3

    vpmull.p64    $t0,$H2,$I2        @ H^2·Ii+2
    veor        $j2,$j2,$I2
    vpmull2.p64    $I2,$H2,$I2
    vpmull2.p64    $j2,$Hhl,$j2

    veor        $Yl,$Yl,$t0
    veor        $Yh,$Yh,$I2
    veor        $Ym,$Ym,$j2

    vpmull.p64    $j3,$H3,$I1        @ H^3·Ii+1
    veor        $j1,$j1,$I1
    vpmull2.p64    $I1,$H3,$I1
    vpmull.p64    $j1,$H34,$j1

    veor        $Yl,$Yl,$j3
    veor        $Yh,$Yh,$I1
    veor        $Ym,$Ym,$j1

    subs        $len,$len,#128
    b.lo        .Ltail4x

    b        .Loop4x

.align    4
.Loop4x:
    veor        $t0,$I0,$Xl
     vld1.64    {$I0-$j3},[$inp],#64
    vext.8        $IN,$t0,$t0,#8
#ifndef __ARMEB__
     vrev64.8    $j1,$j1
     vrev64.8    $j2,$j2
     vrev64.8    $j3,$j3
     vrev64.8    $I0,$I0
#endif

    vpmull.p64    $Xl,$H4,$IN        @ H^4·(Xi+Ii)
    veor        $t0,$t0,$IN
    vpmull2.p64    $Xh,$H4,$IN
     vext.8        $I3,$j3,$j3,#8
    vpmull2.p64    $Xm,$H34,$t0

    veor        $Xl,$Xl,$Yl
    veor        $Xh,$Xh,$Yh
     vext.8        $I2,$j2,$j2,#8
    veor        $Xm,$Xm,$Ym
     vext.8        $I1,$j1,$j1,#8

    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
     vpmull.p64    $Yl,$H,$I3        @ H·Ii+3
     veor        $j3,$j3,$I3
    veor        $Xm,$Xm,$t1
     vpmull2.p64    $Yh,$H,$I3
    veor        $Xm,$Xm,$t2
     vpmull.p64    $Ym,$Hhl,$j3

    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vpmull.p64    $t0,$H2,$I2        @ H^2·Ii+2
     veor        $j2,$j2,$I2
     vpmull2.p64    $I2,$H2,$I2
    veor        $Xl,$Xm,$t2
     vpmull2.p64    $j2,$Hhl,$j2

     veor        $Yl,$Yl,$t0
     veor        $Yh,$Yh,$I2
     veor        $Ym,$Ym,$j2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
     vpmull.p64    $j3,$H3,$I1        @ H^3·Ii+1
     veor        $j1,$j1,$I1
    veor        $t2,$t2,$Xh
     vpmull2.p64    $I1,$H3,$I1
     vpmull.p64    $j1,$H34,$j1

    veor        $Xl,$Xl,$t2
     veor        $Yl,$Yl,$j3
     veor        $Yh,$Yh,$I1
    vext.8        $Xl,$Xl,$Xl,#8
     veor        $Ym,$Ym,$j1

    subs        $len,$len,#64
    b.hs        .Loop4x

.Ltail4x:
    veor        $t0,$I0,$Xl
    vext.8        $IN,$t0,$t0,#8

    vpmull.p64    $Xl,$H4,$IN        @ H^4·(Xi+Ii)
    veor        $t0,$t0,$IN
    vpmull2.p64    $Xh,$H4,$IN
    vpmull2.p64    $Xm,$H34,$t0

    veor        $Xl,$Xl,$Yl
    veor        $Xh,$Xh,$Yh
    veor        $Xm,$Xm,$Ym

    adds        $len,$len,#64
    b.eq        .Ldone4x

    cmp        $len,#32
    b.lo        .Lone
    b.eq        .Ltwo
.Lthree:
    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
     vld1.64    {$I0-$j2},[$inp]
    veor        $Xm,$Xm,$t2
#ifndef    __ARMEB__
     vrev64.8    $j1,$j1
     vrev64.8    $j2,$j2
     vrev64.8    $I0,$I0
#endif

    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vext.8        $I2,$j2,$j2,#8
     vext.8        $I1,$j1,$j1,#8
    veor        $Xl,$Xm,$t2

     vpmull.p64    $Yl,$H,$I2        @ H·Ii+2
     veor        $j2,$j2,$I2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
     vpmull2.p64    $Yh,$H,$I2
     vpmull.p64    $Ym,$Hhl,$j2
    veor        $Xl,$Xl,$t2
     vpmull.p64    $j3,$H2,$I1        @ H^2·Ii+1
     veor        $j1,$j1,$I1
    vext.8        $Xl,$Xl,$Xl,#8

     vpmull2.p64    $I1,$H2,$I1
    veor        $t0,$I0,$Xl
     vpmull2.p64    $j1,$Hhl,$j1
    vext.8        $IN,$t0,$t0,#8

     veor        $Yl,$Yl,$j3
     veor        $Yh,$Yh,$I1
     veor        $Ym,$Ym,$j1

    vpmull.p64    $Xl,$H3,$IN        @ H^3·(Xi+Ii)
    veor        $t0,$t0,$IN
    vpmull2.p64    $Xh,$H3,$IN
    vpmull.p64    $Xm,$H34,$t0

    veor        $Xl,$Xl,$Yl
    veor        $Xh,$Xh,$Yh
    veor        $Xm,$Xm,$Ym
    b        .Ldone4x

.align    4
.Ltwo:
    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
     vld1.64    {$I0-$j1},[$inp]
    veor        $Xm,$Xm,$t2
#ifndef    __ARMEB__
     vrev64.8    $j1,$j1
     vrev64.8    $I0,$I0
#endif

    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
     vext.8        $I1,$j1,$j1,#8
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $Xl,$Xl,$t2
    vext.8        $Xl,$Xl,$Xl,#8

     vpmull.p64    $Yl,$H,$I1        @ H·Ii+1
     veor        $j1,$j1,$I1

    veor        $t0,$I0,$Xl
    vext.8        $IN,$t0,$t0,#8

     vpmull2.p64    $Yh,$H,$I1
     vpmull.p64    $Ym,$Hhl,$j1

    vpmull.p64    $Xl,$H2,$IN        @ H^2·(Xi+Ii)
    veor        $t0,$t0,$IN
    vpmull2.p64    $Xh,$H2,$IN
    vpmull2.p64    $Xm,$Hhl,$t0

    veor        $Xl,$Xl,$Yl
    veor        $Xh,$Xh,$Yh
    veor        $Xm,$Xm,$Ym
    b        .Ldone4x

.align    4
.Lone:
    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
     vld1.64    {$I0},[$inp]
    veor        $Xm,$Xm,$t2
#ifndef    __ARMEB__
     vrev64.8    $I0,$I0
#endif

    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $Xl,$Xl,$t2
    vext.8        $Xl,$Xl,$Xl,#8

    veor        $t0,$I0,$Xl
    vext.8        $IN,$t0,$t0,#8

    vpmull.p64    $Xl,$H,$IN
    veor        $t0,$t0,$IN
    vpmull2.p64    $Xh,$H,$IN
    vpmull.p64    $Xm,$Hhl,$t0

.Ldone4x:
    vext.8        $t1,$Xl,$Xh,#8        @ Karatsuba post-processing
    veor        $t2,$Xl,$Xh
    veor        $Xm,$Xm,$t1
    veor        $Xm,$Xm,$t2

    vpmull.p64    $t2,$Xl,$xC2        @ 1st phase of reduction
    vmov        $Xh#lo,$Xm#hi        @ Xh|Xm - 256-bit result
    vmov        $Xm#hi,$Xl#lo        @ Xm is rotated Xl
    veor        $Xl,$Xm,$t2

    vext.8        $t2,$Xl,$Xl,#8        @ 2nd phase of reduction
    vpmull.p64    $Xl,$Xl,$xC2
    veor        $t2,$t2,$Xh
    veor        $Xl,$Xl,$t2
    vext.8        $Xl,$Xl,$Xl,#8

#ifndef __ARMEB__
    vrev64.8    $Xl,$Xl
#endif
    vst1.64        {$Xl},[$Xi]        @ write out Xi

    ret
.size    gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
___

}
}

$code.=<<___;
.asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
#endif
___

if ($flavour =~ /64/) {            ######## 64-bit code
    sub unvmov {
    my $arg=shift;

    $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
    sprintf    "ins    v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
                         $3<8?$3:$3+8,($4 eq "lo")?0:1;
    }
    foreach(split("\n",$code)) {
    s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel    $1$2,$1zr,$1$2,$3/o    or
    s/vmov\.i8/movi/o        or    # fix up legacy mnemonics
    s/vmov\s+(.*)/unvmov($1)/geo    or
    s/vext\.8/ext/o            or
    s/vshr\.s/sshr\.s/o        or
    s/vshr/ushr/o            or
    s/^(\s+)v/$1/o            or    # strip off v prefix
    s/\bbx\s+lr\b/ret/o;

    s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;    # old->new registers
    s/@\s/\/\//o;                # old->new style commentary

    # fix up remaining legacy suffixes
    s/\.[ui]?8(\s)/$1/o;
    s/\.[uis]?32//o and s/\.16b/\.4s/go;
    m/\.p64/o and s/\.16b/\.1q/o;        # 1st pmull argument
    m/l\.p64/o and s/\.16b/\.1d/go;        # 2nd and 3rd pmull arguments
    s/\.[uisp]?64//o and s/\.16b/\.2d/go;
    s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;

    # Switch preprocessor checks to aarch64 versions.
    s/__ARME([BL])__/__AARCH64E$1__/go;

    print $_,"\n";
    }
} else {                ######## 32-bit code
    sub unvdup32 {
    my $arg=shift;

    $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
    sprintf    "vdup.32    q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
    }
    sub unvpmullp64 {
    my ($mnemonic,$arg)=@_;

    if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
        my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
                 |(($2&7)<<17)|(($2&8)<<4)
                 |(($3&7)<<1) |(($3&8)<<2);
        $word |= 0x00010001     if ($mnemonic =~ "2");
        # since ARMv7 instructions are always encoded little-endian.
        # correct solution is to use .inst directive, but older
        # assemblers don't implement it:-(
        sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s",
            $word&0xff,($word>>8)&0xff,
            ($word>>16)&0xff,($word>>24)&0xff,
            $mnemonic,$arg;
    }
    }

    foreach(split("\n",$code)) {
    s/\b[wx]([0-9]+)\b/r$1/go;        # new->old registers
    s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;    # new->old registers
    s/\/\/\s?/@ /o;                # new->old style commentary

    # fix up remaining new-style suffixes
    s/\],#[0-9]+/]!/o;

    s/cclr\s+([^,]+),\s*([a-z]+)/mov.$2    $1,#0/o            or
    s/vdup\.32\s+(.*)/unvdup32($1)/geo                or
    s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo        or
    s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo    or
    s/^(\s+)b\./$1b/o                        or
    s/^(\s+)ret/$1bx\tlr/o;

    if (s/^(\s+)mov\.([a-z]+)/$1mov$2/) {
        print "     it      $2\n";
    }

    print $_,"\n";
    }
}

close STDOUT or die "error closing STDOUT: $!"; # enforce flush

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ ok ]

:: Make Dir ::
 
[ ok ]
:: Make File ::
 
[ ok ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.1 [PHP 8 Update] [02.02.2022] maintained byC99Shell Github | Generation time: 0.5944 ]--